A new modelling approach for piled and other ground heat exchanger applications

F. Cecinato¹, F. Loveridge²

¹Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy

Ground heat exchangers

- Borehole heat exchanger
 (BHE): heat exchanger
 installed inside a borehole
 (Ø=10-20 cm)
- routinely <u>designed with</u> <u>commercial software</u>
- with a simplified approach (linear infinite heat source, steady-state assumptions)

http://www.gtr.ethz.ch/

Ground heat exchangers

- Energy pile (EP): heat exchanger installed inside a piled foundation (\emptyset =0.3-2.0 m)
- routinely deisgned with 'mechanical criteria'. BHEs' Simplified thermal analysis is not adequate, since:
 - <u>Different aspect ratio</u> compared to BHEs
 - -> the linear infinite source approximation doesn't apply
 - Much larger diameter
 - -> important transient heat transfer effects

Actual thermal behaviour of EPs

 The time needed to reach steady state depends on

<u>Ø pile</u>, no. & position of pipes, thermal conductivity

- Type of heat pulse
- Surface temperature changes both along a vertical and horizontal section: 3D effects

FEM numerical model

Use of software ABAQUS

• To integrate 3D transient conduction through the concrete & the ground $\rho_s c_{ps} \dot{T} = \nabla \left(\lambda_s \nabla T \right)$

+ Bespoke user subroutines

 To model the convective heat transfer at the fluid/solid interface and the temperature changes in the fluid along the

pipe $\dot{m}c_{pf}\nabla T = h\Delta T$

- 3D FE mesh manually created to minimise computational time
- Simmetry can be exploited for single U-pipe EPs

Numerical model validation against field data

- The outcome of a thermal response test (TRT) on a single test pile installed in London clay was reproduced
 - \varnothing =30 cm, L= 27m, single U-pipe, equipped with sensors measuring both concrete and exchanger fluid temperature
 - Input data:
 - * Inlet fluid temperature
 - * Geometry & thermal properties of materials

Numerical model validation against field data

• Simulation of <u>outled fluid temperature</u> evolution compared to the measured one

Numerical model validation against field data

• Simulation of <u>concrete temperature</u> evolution compared to the measured one

Example of simulation output

• Temperature contour lines evolution after 4 days of heat injection, cross-section view at pile mid-height

• Pile ∅=1 m, Single U-pipe

Design applications

- Improved <u>estimation of thermal properties</u> during TRTs (back-calculating λ & c of soil & concrete by fitting measured T curves)
- Identification of the most important design parameters in <u>enhancing energy efficiency</u>, yet complying with geotechnical design
- Assessment of <u>thermo-mechanical couplings</u> that could interfere with the structural/geotechnical behaviour of the system (e.g. alteration of lateral bearing capacity)
- Application to other geothermal structures (e.g. tunnel linings, diaphragm walls...)

Example of design application/1: Improved parameter estimation during TRTs

 Sensitivity analysis to identify best-fit values of thermal parameters for different TRT stages.

Simulation #	TRT stages	λ_c	λ_{g}	c_c	c_g	RMSE	Global RMSE
1	2&3	2.8	2.3	1050	1820	0.2308	0.659
	4&5	2.8	2.3	1050	1820	0.8653	
2	2&3	2.5	2.3	1050	1820	0.2826	0.670
	4&5	2.5	2.3	1050	1820	0.8686	
3	2&3	2.8	2.2	1000	2100	0.2312	0.652
	4&5	2.8	2.2	1000	2100	0.8557	
4	2&3	2.6	2.3	1050	2100	0.2532	0.669
	4&5	2.6	2.3	1050	2100	0.8750	
5	2&3	2.55	2.6	1000	2100	0.2917	0.666
	4&5	2.55	2.6	1000	2100	0.8635	

• More direct and accurate determination (compared to analytical and semi-empirical methods) of pile and ground physical properties λ_c , λ_g , c_c and c_g

Example of design application/2: Energy efficiency vs no. of pipes installed

• Total exchanged energy after 4 days' heat injection simulation (initial $\Delta T=8^{\circ}C$) for a 1m diameter pile

Conclusions

- An innovative 3D model to accurately reproduce the main features of heat transfer in geothermal systems was developed.
- Validation against field data shows the model's good prediction capabilities.
- The model can be used to gain further insight into thermal and thermomechanical aspects of geothermal systems, leading to improved design criteria.

References

- Cecinato, F., Loveridge, A. (2015). "Influences on the thermal efficiency of energy piles". Energy (82): 1021-1033. [doi:10.1016/j.energy.2015.02.001]
- Loveridge, A., Cecinato, F. (2015). "Thermal performance of thermo-active CFA piles". Environmental Geotechnics. Accepted for publication.
- Cecinato, F., Loveridge, F., Gajo, A., Powrie, W. (2015). A new modelling approach for piled and other ground heat exchanger applications. XVI ECSMGE 2015, Edimburgh, UK [ISBN 072776067X]
- Loveridge, F., Cecinato, F. (2015). What is the potential for pipe to pipe interactions in energy piles? Proceedings of the International Symposium on Energy Geotechnics, Barcelona Spain, 2-4 June.

