Closed-loop ground source facilities in Denmark

Maria Alberdi-Pagola, Ph.d. student (mapa@civil.aau.dk) Dr. Søren Erbs Poulsen, Docent (soeb@via.dk)

Where? Equipment Facilities Study sites Papers

Determination of thermal properties of soils

- Inhouse TRT model & interpretation procedure
- Diagnostic tool for ongoing TRTs
- Statistically based stopping criterion for ongoing tests

TRT equipment (UBeG, Germany)

Determination of thermal properties of soils

Measurement in lab:

- Hot Disk (VIA)
- Thermal needle probe (VIA)
- Guarded hot plate (AAU)
- Laser flash (AAU)

Hot Disk

- Determination of thermal properties of soils
- VIA Energy Park, Horsens

Where? Equipment Facilities Study sites Papers

- Determination of thermal properties of soils
- VIA Energy Park, Horsens

Where? Equipment Facilities Study sites Papers

- Determination of thermal properties of soilsVIA Energy Park, Horsens
- Langmarksvej, Horsens, precast energy piles

Validating TRT of energy piles:

- 8 precast energy piles
 [12 or 18 m + 1U or 2U]
- 1 BHE [17 m + 2U]
- 5 TRT + lab measurements

- Determination of thermal properties of soils
- VIA Energy Park, Horsens
- Langmarksvej, Horsens, precast energy piles
- BTES, Brædstrup,
 15 km from Horsens,
 monitored installation
 - 48 BHE BTES
 - DHP seasonal balancing of solar panel heat production
 - 5 temperature sensor array borehole (20 measurement levels)
 - Soil temperature ~ 50°C
 - λ_s scaling effects (full 3D 6-layer calibrated model: λ_s 21% > λ_s TRT)

- Determination of thermal properties of soils
- VIA Energy Park, Horsens
- Langmarksvej, Horsens, precast energy piles
- Brædstrup, BTES, monitored installation
- Energy piles, Rosborg Gymnasium, Vejle, monitored installation
 - 200 energy piles
 - 4,000 m² living area
 - 200 kW heat pump

- Determination of thermal properties of soils
- VIA Energy Park, Horsens
- Langmarksvej, Horsens, precast energy piles
- Brædstrup, BTES, monitored installation
- Energy piles, Rosborg
 Gymnasium, Vejle,
 monitored installation
- Energy piles, Rosborg Gymnasium, Vejle, new building
 - 220 energy piles

8/12/2015

Interpretation of ongoing thermal response tests of vertical (BHE) borehole heat exchangers with predictive uncertainty based stopping criterion.

Energy. S.E. Poulsen & M. Alberdi-Pagola, 2015.

Thermal response testing and performance of quadratic cross section energy piles (Vejle, Denmark). Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development. M. Alberdi & S.E. Poulsen.

Model analysis of operational data from pilot borehole thermal energy storage (BTES) in Brædstrup, Denmark: calibration, validation and upscaling.

K.W. Tordrup, S.E. Poulsen & H. Bjørn, 2016 (peer-reviewed journal paper in prep.). Soil temperature time series and operational data will be published with the paper.

A performance case study of the energy pile foundation at Rosborg Gymnasium (Denmark). M. Alberdi-Pagola, S.E. Poulsen, S. Madsen & R. L. Jensen, 2016 (in prep.).